1 – O Número Mágico
O número 1089 é conhecido como número mágico. Veja por que:
Escolha qualquer número de três algarismos diferentes. Por exemplo, 875.
Agora escreva este número de trás para frente e subtraia o menor do maior, assim:
875 de trás para frente é 578
Subtraindo o menor (578) do maior (875), temos:
875 – 578 = 297
Agora some este resultado com o seu inverso, assim:
297 + 792 = 1089 - O NÚMERO MÁGICO!
Faça a experiência com qualquer número de três algarismos diferentes e verá que o resultado será sempre 1089.
2 – Curiosidade Com Números De Três Algarismos
Escolha qualquer número de três algarismos. Por exemplo: 234
Agora escreva este número na frente dele mesmo, assim:
234234
Agora divida por 13:
234234 :13 = 18018
Agora divida o resultado por 11:
18018 : 11 = 1638
Divida novamente o resultado, agora por 7:
1638 : 7 = 234
Viu só? O resultado é o numero de três algarismos que você escolheu: 234. Pode experimentar com qualquer outro número de três algarismos. O resultado será sempre o mesmo.
3 – Data Histórica: 20/02/2002
20 horas e 02 minutos de 20 de fevereiro de 2002 foi um instante histórico. Durante um minuto, houve uma conjunção de números que somente ocorre duas vezes por milênio:
20:02 20/02/2002
Esta é uma simetria que na matemática é chamada de capicua (algarismos que dão o mesmo número quando lidos da esquerda para a direita, ou vice-versa). A raridade deve-se ao fato de que são apenas os algarismos 2 e 0 e se você ler de trás para a frente, dá a mesma coisa:
20 02 20 02 20 02
A última ocasião em que isso ocorreu foi às 11h11 de 11 de novembro de 1111, formando a data 11h11 11/11/1111. A próxima vez será somente às 21h12 de 21 de dezembro de 2112 (21h12 21/12/2112). Provavelmente não estaremos aqui para presenciar.
Depois, nunca mais haverá outra capicua. Em 30 de março de 3003 não ocorrerá essa coincidência matemática, já que não existe a hora 30.
4 - O Número Pi (p)
Se você pegar qualquer círculo, medir a sua circunferência (perímetro) e dividir o resultado pelo diâmetro desse círculo, vai encontrar sempre este número:
3,14
Se você aproximar mais o número, vai achar:
3,14159
Aproximando mais ainda, achará:
3.14159265358
Se sua calculadora tiver espaço bastante, você poderá chegar a
3.14159265358979323846264
Ainda dá para aproximar mais, chegando a:
3.1415926535897932384626433832795028841
Mais um pouco e você chega a:
3,1415926535897932384626433832795028841971693993751058
A essa altura, talvez você queira saber até onde vai essa aproximação. Aí, uma surpresa: vai até o infinito, não acaba nunca! Você passaria o resto da sua vida fazendo aproximações e jamais terminaria! Não importa o tamanho do círculo, ele pode ser enorme ou bem pequeno, o resultado será sempre este mesmo número, chamado de “pi” pelos matemáticos e representado pela letra grega p (lê-se “pi”). É a mais antiga constante matemática que se conhece. É um número irracional, com infinitas casas decimais. Em 1997, Y. Kamada e D. Takahashi, da Universidade de Tóquio chegaram a 51.539.600.000 (cinquenta e um bilhões, quinhentos e trinta e nove milhões e seiscentas mil) casas decimais. Só podia ser japonês pra fazer isso…
Nenhum comentário:
Postar um comentário